primary human skeletal myoblasts: transfection of siRNA

Fig. 1: Microscopic observation of human primary myoblasts after transfection with a Cy3-labeled siRNA using Viromer® BLUE

- 100 nM control pre-microRNA Cy3-labeled (red)
- Hoechst stained nuclei (blue)
- Picture 48h post-transfection

Data from J.A. Zagalak, ETH Zürich – IPW (Switzerland)
primary human skeletal myoblasts: transfection of siRNA

Fig. 2: Dose-response curve to identify optimal siRNA concentration for knocking-down gene expression in human primary skeletal myoblasts with Viromer® BLUE

- From 10 nM siRNA, up to 90% knock-down

“Among several other commercially available RNA silencing reagents, Viromer provided the highest efficacy for human primary skeletal muscle cells. We are now able to transfect not only primary myoblast but also fully differentiated myotubes. Depending on the gene of interest the knock down effect is still present after several days.”

Data from C. Klingler, Clinical Chemistry & Pathobiochemistry – University of Tübingen (Germany)
Fig. 3: Comparative knock-down efficiency observed by Western-blot in human primary myoblasts transfected with Lipofectamine® RNAiMAX and Viromer® BLUE

- Standard protocol
- Except for cell confluency (slightly lower than optimal due to the cells)
- Around **20% higher efficiency** with Viromer® BLUE
- Minor toxicity was observed but this was likely due to knockdown of the gene rather than toxicity from Viromer itself.

Anonymous data